文章编号: 0253-2239(2009)12-3248-07

氮化镓中性和离子团簇结构与振动光谱的研究

李恩玲1 马德明1 刘满仓1 王雪文2

(1 西安理工大学理学院, 陕西 西安 710048; 2 西北大学信息科学与技术学院, 陕西 西安 710068)

摘要 用密度泛函理论(DFT)中的 B3LYP 方法,在 $6-31G^*$ 基组上对 $GaN_m(m=2\sim7)$ 和 $Ga_2N_m(m=3\sim6)$ 中性和阴阳离子团簇的几何结构和振动光谱进行了系统的研究。得到了各团簇的几何结构和稳定性幻数规律,这些团簇的几何结构均为平面结构;富 N 氮化镓团簇的 N-N 键的振动频率为 2200 cm⁻¹;所有团簇中都有 N₂ 或 N₃ 分子单元,而且在所有分子中 N₃ 分子单元中的两个 N-N 键长也基本相同;富 N 氮化镓离子系列团簇的能隙范围比其对应中性系列团簇的宽。

关键词 团簇;密度泛函理论(DFT);几何结构;振动光谱

中图分类号 O469 文献标识码 A doi: 10.3788/AOS20092912.3248

Research on Structure and Vibrational Frequency of GaN Neutral and Ion Clusters

Li Enling¹ Ma Deming¹ Liu Mancang¹ Wang Xuewen²

 $\left(\begin{array}{c} ^{1} \ School \ of \ Science \,, \ Xi'an \ University \ of \ Technology \,, \ Xi'an \,, \ Shaanxi \ 710048 \,, \ China \ Variable \ School \ of \ Information \ Science \ and \ Technology \,, \ Northwestern \ University \,, \ Xi'an \,, \ Shaanxi \ 710068 \,, \ China \ Variable \ School \ of \ Information \ Science \ and \ Technology \,, \ Northwestern \ University \,, \ Xi'an \,, \ Shaanxi \ 710068 \,, \ China \ Variable \ School \ of \ Information \ Science \ Annual \ Shaanxi \ Shaanxi \ Shaanxi \ Thomas \ Shaanxi \ Shaanxi$

Abstract The method of $B3LYP/\ 6-31G^*$ in density functional theory (DFT) was used to optimize the geometrical configuration and study the vibrational frequency of GaN_m ($m=2\sim7$) and Ga_2N_m ($m=3\sim6$) neutral and ion clusters. The structures and stability magic number regularity of the clusters were obtained, all structures of these clusters are plane. The vibrational frequency of N-N band of nitrogen-rich GaN clusters is 2200 cm⁻¹. There is N_2 or N_3 unit in the structures of all cluster, and the length of two N-N bonds of N_3 of all clusters are equal mainly. The band gap range of nitrogen-rich GaN ion clusters is broader than nitrogen-rich GaN neutral clusters.

Key words cluster; density functional theory(DFT); geometrical structure; vibrational frequency

1 引 言

GaN 是一种直接宽禁带半导体材料,具有优异的化学和物理稳定性,室温下禁带宽度为 3.4 eV,热导率高、电子饱和漂移速度大、介电常数小等,这些特点使 GaN 材料在高亮度短波长发光二极管、半导体激光器及光电探测器、光学数据存储、高性能紫外探测器和高温、高频、大功率半导体器件等光电子学和微电子学领域具有广泛的应用前景。近年在国际性的材料、半导体物理、光电子等学术会议上,GaN 基材料和器件研究是交流的热点。目前,GaN 材料制备技

密度泛函理论已经成功地用于计算分子的结构

收稿日期: 2008-12-08; 收到修改稿日期: 2009-03-17

基金项目: 西安市应用材料创新基金(XA-AM-200812)、西安市应用发展研究计划项目(YF07064)和西安理工大学博士启动基金(108-210904)资助课题。

作者简介:李恩玲(1965—),博士,教授,主要从事纳米半导体材料制备与模拟等方面的研究。

E-mail: lienling@xaut.edu.cn

和光电子特性 $^{[15\sim17]}$,用 B3LYP/6-31G* 密度泛函方法对 $GaN_m(m=2\sim7)$ 和 $Ga_2N_m(m=3\sim6)$ 中性和阴阳离子团簇进行了系统的计算,得到了这些团簇的基态结构。

2 计算方法

计算是在 Dell 工作站上使用 Gaussian03 程序^[18]进行的。首先,在结构优化的过程中,探索GaN 团簇的几何结构规律,选择尽可能多的初始结构(对不同的团簇分子分别设计了 20~40 多种初始结构);在 HF/STO-3G 水平上对所设计团簇的构型进行优化计算;然后,再将优化结果作为 HF/6-31G* 水平的初始参数重新进行全构型优化;为了得到势能面上的最小位置,即最稳定结构;最后,在更高层次上用 B3LYP/6-31G* 方法再进行一次更精确的优化计算,即对这些结构进行优化和频率计算,得到能量较低的 10~20 种结构。本文主要对其中无虚频、且能量最低的结构(文中称基态结构,即最稳定结构)和能量第二低的结构(文中称亚稳态结构)进行论述。

3 结果与讨论

3.1 几何结构

3.1.1 $GaN_m(m=2\sim7)$ 和 $Ga_2N_m(m=3\sim6)$ 中性 团簇的结构

 $GaN_m(m=2\sim7)$ 和 $Ga_2N_m(m=3\sim6)$ 中性团簇的基态几何结构如图 1 所示。图中大球和小球分别表示 Ga 原 子 和 N 原 子,原 子 间 距 分 别 小 于

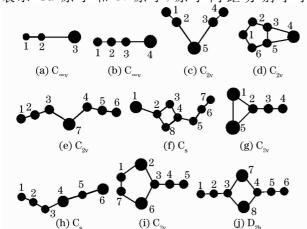


图 1 $GaN_m(m=2\sim7)$ 和 $Ga_2N_m(m=3\sim6)$ 中性团簇的基态结构

Fig. 1 Ground-state structures of ${\rm GaN}_m(m\!=\!2\!\sim\!7)$ and ${\rm Ga_2\,N}_m(m\!=\!3\!\sim\!6) \ \ {\rm neutral\ clusters}$

0.3400 nm (Ga-Ga),0.2400 nm (Ga-N)及 0.1400 nm (N-N)时成键。表 1 给出了基态结构的几何参数。

表 1 $GaN_m(m=2\sim7)$ 和 $Ga_2N_m(m=2\sim6)$

团簇基态结构的键长

Table 1 The bond length of the ground-state structures of $GaN_m(m=2\sim7)$ and $Ga_2N_m(m=2\sim6)$ clusters

Cluster	$\frac{\text{And Ga}_2 N_m (m = 2 \sim 6) \text{ clusters}}{\text{Bond lengths /nm}}$				
GaN ₂	1-2	0.1124			
•	2-3	0.2260			
GaN_3	1-2	0.1147			
	2-3	0.1200			
	3-4	0.1920			
GaN_4	1-2	0.1116			
	2-5	0.2360			
GaN_5	1-2	0.1314			
	3-4	0.2202			
GaN_{6}	1-2	0.1140			
	2-3	0.1220			
	3-7	0.1910			
GaN_7	1-2	0.1986			
	2-3	0.1390			
	2-8	0.1370			
	3-4	0.1343			
	4-5	0.1380			
	4-8	0.1346			
	5-6	0.1240			
	6-7	0.1140			
$Ga_2 N_3$	1-2	0.2133			
	2-3	0.1220			
	3-4	0.1140			
	1-5	0.2910			
$\operatorname{Ga}_2\operatorname{N}_4$	1-2	0.1140			
	2-3	0.1230			
	3-4	0.1840			
	4-5	0.1690			
	5-6	0.2840			
$\mathrm{Ga}_2\mathrm{N}_5$	1-2	0.2220			
	2-3	0.2160			
	3-4	0.1233			
	4-5	0.1140			
	1-7	0.1150			
$\operatorname{Ga}_2\operatorname{N}_6$	1-2	0.1140			
	2-3	0.1220			
	3-7	0. 2120			

 $GaN_m(m=2\sim7)$ 和 $Ga_2N_m(m=3\sim6)$ 团簇均为平面结构。

GaN₂:Kandalam 等^[19]在密度泛函理论的基础 上运用非局域密度近似的方法计算了 GaN₂ 团簇的 结构;Song 等^[14]用 FP-LMTO 方法计算了 GaN₂ 团 簇的结构,得到 GaN_2 的结构是三角形 C_{2V} 构型。本 文得到 GaN_2 的最低能态的结构是 $C_{\infty V}$ 构型,如图 1(a)所示,Ga-N 键长是 0.2260 nm,N-N 键长是 0.1124 nm。 GaN_2 的另一结构是 C_8 构型,Ga-N 键长是 0.2243 nm,N-N 键长是 0.1120 nm,N-N-Ga 键角是 163.50° ,比基态能量高 0.02 eV,和图 1(a) 几乎是简并的。在 GaN_2 结构中,由于 N-N 键强于 Ga-Ga 键,所以 GaNN 结构比 NGaN 结构稳定。

 GaN_3 :最低能量结构如图 1(b),是直线型 $C_{\infty V}$ 构型, N1-N2 键长是 0.1147 nm, N2-N3 键长是 0.1200 nm, N3-Ga4 键长是 0.1920 nm。 Song 等 [14] 得到 GaN_3 的结构是弯曲的 Ga-N-N-N (C_S) 构型,键长和结果吻合较好,在计算的过程中也设计了这种弯曲 C_S 结构,但最终优化结果为直线型 $C_{\infty V}$ 构型,与 AlN_3 基态构型相同 [20]。

 GaN_4 :基态结构如图 1(c)具有 C_{2V} 对称性,相当于两个 GaN_2 分子公用一个 Ga 原子对接而成,与 Song 等 $[^{14}]$ 得到的结构相同。N-N 键长是0.116 nm, Ga-N 键长是 0.2360 nm, N-Ga-N 键角是 73.1°, Ga-N 键长比文献[14]的稍长,N-Ga-N 键角比文献 [14]的小。 GaN_4 还有一亚稳态是弯曲的 N-Ga-N-N- (C_S) 构型,比基态能量高 4.868 eV,这个构型文献 [14]中也有。

 GaN_5 :基态结构如图 1(d),是一个具有 C_{2V} 对称的平面基态结构,5 个 N 原子构成一个等边五角形, N-N 键长是 0.1314 nm, Ga-N 键长是 0.2202 nm,这与文献[14]吻合,但文献[14]是立体结构,本文在计算中也设计了这样的立体结构,但最终得到的是平面结构。

 GaN_6 :基态结构如图 1(e) 所示,是 C_{2v} 构型,相当于两个弯曲的 Ga-N-N-N 结构公用一个 Ga 原子对接而成,各种键长与 GaN_3 结构的键长也基本相同,与文献[14]吻合较好。

 GaN_7 :对于 GaN_7 ,计算结果与文献[14]完全吻合。如图 1 (f),基态是 C_8 构型, Ga-N 键长是 0.1986 nm,4 个 N 原子组成的环形结构的 N-N 键长在 0.1340~0.1400 nm 之间, N_3 结构中的 N-N 键长分别是 0.1240 和 0.1140 nm。

 Ga_2N_3 :该分子具有 C_{2v} 对称,如图 1(g) 所示,与文献 [14] 结构一样,可以看作是一个弯曲的 Ga-N-N-N结构再连接一个 Ga 原子而构成。

 Ga_2N_4 :基态结构如图 1(h),具有 Cs 对称,是平面结构,与文献 [14]结果不同。图 1(h)可看作是 GaN_4 的亚稳态结构再连接一个 Ga 原子而成。

 $Ga4-N_3$ 与 $Ga6-N_5$ 键长是 0.1840~nm, $Ga4-N_5$ 键长是 0.1690~nm, N_3 结构中的 N-N 键长分别是 0.1240~nm 0.1140~nm 。

 Ga_2N_5 :图 1(i)是具有 C_{2V} 对称的构型,相当于在 Ga_2N_3 [图 1(g)]的两个 Ga 原子上再连接一个 N_2 构成,与文献[14]完全吻合。各种键长如表 1 所示。

 Ga_2N_6 :是由 2 个 Ga_2N_3 [图 1(g)]结构公用两个 Ga 原子对接而成,如图 1(j)是 D_{2h} 构型,与文献 [14]计算结果相同。

 $GaN_m(m=2\sim7)$ 和 $Ga_2N_m(m=3\sim6)$ 中性团簇的计算结果和其他文献的结果吻合较好。

3.1.2 $GaN_m(m=2\sim7)$ 和 $Ga_2N_m(m=3\sim6)$ 离子 团簇的几何构型

对 $GaN_m^-(m=2\sim7)$ 、 $Ga_2N_m^-(m=3\sim6)$ 与 GaN_m^+ ($m=2\sim7$)、 $Ga_2N_m^+(m=3\sim6)$ 离子团簇的几何结构进行了计算,结果如图 2 所示。正负离子团簇对称点群相同时,只列出一种结构,点群不同时,正负离子簇的结构分别用 c(cationic) 和 a(anionic)表示。表 2 给出了这些分子的对称性和几何参数。可以看出,相同分子对应的正负离子结构差异较大,与中性团簇相比较,在 $GaN_m^-(m=2\sim7)$ 和 $Ga_2N_m^-(m=3\sim6)$ 中, $4a(C_s)$, $6a(C_{2V})$, $8a(C_{2V})$ 等 3 个结构与中性团簇不同;而 $GaN_m^+(m=2\sim7)$ 和 $Ga_2N_m^+(m=3\sim6)$ 中, $3c(C_s)$, $4c(C_s)$, $8c(C_s)$, $9c(C_{2V})$ 等 4 个结构与中性团簇不同。即使对称点群相同的结构,键长、键角等几何参数也有较大差异,可见原子团簇的电荷状态对簇合物的结构影响较大。

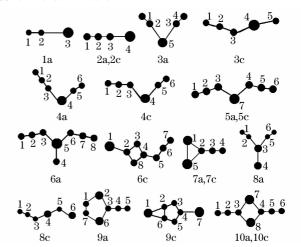


图 2 $GaN_m^-(m=2\sim7)$ 、 $Ga_2N_m^-(m=3\sim6)$ 与 GaN_m^+ ($m=2\sim7$)、 $Ga_2N_m^+(m=3\sim6)$ 团簇的几何构型

Fig. 2 Structures of GaN_m^- ($m=2\sim7$), $Ga_2N_m^-$ ($m=3\sim6$) and GaN_m^+ ($m=2\sim7$), $Ga_2N_m^+$ ($m=3\sim6$) clusters

表 2 GaN_m^- ($m=2\sim7$)、 $Ga_2N_m^-$ ($m=3\sim6$) 与

 $GaN_m^+(m=2\sim7)$ 、 $Ga_2N_m^+(m=3\sim6)$ 团簇的对称性和键长

Table 2 The symmetry and bond length of GaN_m^- ($m=2\sim7$), $Ga_2N_m^-$ ($m=3\sim6$) and GaN_m^+ ($m=2\sim7$),

 $Ga_2 N_m^+ (m=3\sim 6)$ clusters

	$Ga_2 N_m^+ (m=3)$		
Structure	Symmetry		ngth /nm
1a	$C_{\infty V}$	1-2	0.1154
		2-3	0.2080
2a	$C_{\infty V}$	1-2	0.1171
		2-3	0.1190
		3-4	0.2040
3a	C_{2V}	1-2	0.1139
		2-5	0.2130
4a	C_{s}	1-2	0.1168
		2-3	0.1190
		3-4	0.2030
		4-5	0.2170
		5-6	0.1140
2c	$C_{\infty V}$	1-2	0.1131
- -	- · · · v	2-3	0.1220
		3-4	0.1730
3с	C_{s}	1-2	0.1130
00	0,5	2-3	0.1250
		3-4	0.1790
4 -	C	4-5	0.1850
4 c	C_{s}	1-2	0.1140
		2-3	0.1220
		3-4	0.2030
		4-5	0.2430
		5-6	0.1104
5c	C_{2V}	1-2	0.1130
5a	C_{2V}	1-2	0.1161
		2-3	0.1200
		3-7	0.2054
6a	C_{2V}	1-2	0.1154
		2-3	0.1210
		3-5	0.1950
7	C	4-5	0.1800
7a	C_{2V}	1-2	0.2170
		1-5	0.2792
		2-3	0.1210
8a	C_{2V}	3-4 1-2	0.1150
Оa	C_{2V}	2-3	0.1131 0.1250
		2-3 3-7	0.1230
6c	C_s	1-2	0.1790
00	Ų _S	2-3	0.1420
		2-8	0.1310
		4-5	0.1330
		5-6	0.1270
		6-7	0.1120

1	4歩	#	`
(44	スマ	٠)

Structure	Symmetry	Bond le	Bond length /nm		
7 c	C_{2V}	1-2	0.2160		
		1-5	0.3997		
		2-3	0.1250		
		3-4	0.1130		
8c	C_{s}	1-2	0.1132		
		2-3	0.2130		
		3-4	0.2420		
9a	C_{2V}	1-2	0.2040		
		1-7	0.1187		
		2-3	0.2220		
		3-4	0.1210		
		4-5	0.1150		
10a	D_{2h}	1-2	0.1161		
		2-3	0.1210		
		3-7	0.2120		
		2-3	0.1240		
		3-4	0.1798		
		4-5	0.1770		
		5-6	0.1840		
9c	C_{2V}	1-2	0.2389		
		2-3	0.1300		
		2-6	0.1340		
		3-4	0.1320		
		4-7	0.2230		
10c	$\mathrm{D}_{2\mathrm{h}}$	1-2	0.1132		
		2-3	0.1240		
		3-7	0.2060		

计算出 GaN_2^+ 的所有构型(平面三角形和线状)中均有很强的 N-N 键,键长是 0.1104 nm,比中性团簇的 N-N 键长短 1.8%,但是 Ga-N 键长均大于 2.670 nm,所以在图 2 中没有给出它们的构型。可以推测失去的电子是 Ga 原子的最外层电子,而两个 N 原子形成了稳定的 N_2 结构。

 GaN_5^- (4a)的结构可以看成是一个 GaN_3 分子和一个 GaN_2 分子对接而成; GaN_7^- (6a)的结构可以看成是一个 GaN_6^- 结构的 Ga 原子上再连接一个 N 原子而构成; $Ga_2N_4^-$ (8a)的结构可以看成是一个 GaN_4^- 结构的 Ga_5 原子上再连接一个 Ga 原子而构成的; $Ga_2N_5^-$ (9a)可以看作是 $Ga_2N_3^-$ (7a)的 Ga_1 和 Ga_5 原子上再连接两个 N 原子而构成的。

 GaN_4^+ (3c)的结构可以看成是一个 GaN_3^+ 亚稳 态结构的 Ga 原子上再连接一个 N 原子而构成的; GaN_5^+ (4c)的结构与 GaN_5^- 结构相似,只是 N_2 - N_3 -Ga4 键角不同; $Ga_2N_4^+$ (8c)的结构可以看成是一个 GaN_4^- 结构的 N_5 原子上再连接一个 Ga 原子而构

成的; $Ga_2N_5^+(9c)$ 的结构可以看成是一个 GaN_5 结构的 N_1 原子上再连接一个 Ga 原子而构成的。

3.2 $GaN_m(m=2\sim7)$ 和 $Ga_2N_m(m=3\sim6)$ 中性和离子团簇的能量和振动光谱

表 3 和表 4 分别给出 GaN_m ($m=2\sim7$)和 Ga_2N_m ($m=3\sim6$)中性和离子团簇的总能量、零点能、热容、标准熵和能隙等,从表中可以看出,在各系列团簇中,随着团簇尺寸的增大,零点能、摩尔热容和标准熵数值逐渐增大;对于 m 相等的 GaN_m^- ($m=2\sim7$)和 GaN_m^+ ($m=2\sim7$) 团簇及 $Ga_2N_m^-$ ($m=3\sim6$)和 $Ga_2N_m^+$ ($m=3\sim6$)团簇,结构的对称性一致

时,热容和标准熵的数值相差较小,对称性差异较大的结构热容和标准熵的数值相差较大,由此可见热容和标准熵的变化可反映出团簇结构的对称性信息。富 N 氮化镓中性团簇的最高已占分子轨道(HOMO)-最低未占分子轨道(LUMO)能量间隔在3.89~5.86 eV 之间,表明上述团簇将显示像发光材料一样的性质; $GaN_m^-(m=2\sim7)$ 和 $Ga_2N_m^-(m=3\sim6)$ 离子 团簇的 HOMO-LUMO 能量间隔在0.86~5.60 eV之间,比其对应中性团簇的 HOMO-LUMO 能量间隔范围宽,能显示像半导体材料和发光材料一样的性质。

表 3 GaN_m(m=2~7)和 Ga₂ N_m(m=3~6)团簇的对称性、总能量、零点振动能、能隙、热容、标准熵和谐振频率 Table 3 The symmetry, total energy, zero-point vibrational energy, energy gap, heat capacity, standard entropy and harmonic vibrational frequency of GaN_m(m=2~7) and Ga₂ N_m(m=3~6) clusters

Cluster Symme		Total ananas/	Zero point		Heat Standard		Frequencies/cm ⁻¹	
	Symmetry	Total energy/ (a. u.)	energy/	Energy	capacity/	entropy/	Intensity	Lowest
			(kJ /mol)	gap /eV	$[J/(mol \cdot k)]$	$[J/(mol \cdot k)]$	vibration	frequency
GaN ₂	$C_{\infty V}$	-55305.28	15.945	5.86	44.30	273.61	2141.3 (s _g)	148.3 (a)
GaN_3	C_{\inftyV}	-56794.90	34.595	5.19	50.66	272.63	2279.9 (s_g)	158.0 (pi)
GaN_4	C_{2V}	-58285.77	33.108	5.62	80.34	367.52	2194.6 (b ₂)	$67.4 (a_1)$
GaN_5	C_{2V}	-59773.79	59.806	5.36	61.96	317.80	266.0 (a ₁)	$74.9 (b_2)$
GaN_6	C_{2V}	-61262.60	66.141	4.31	94.83	377.12	2225.1 (b ₂)	$46.9 (b_1)$
GaN_7	C_{s}	-62748.63	79.094	3.89	92.47	383.44	2251.2 (a')	27.1 (a")
Ga_2N_3	C_{2V}	-109120.95	33.765	4.26	72.84	357.72	2247.3 (a ₁)	55.3 (b ₂)
Ga_2N_4	C_s	-110610.30	43.972	4.16	87.60	373.81	2277.4 (a')	46.3 (a')
Ga_2N_5	C_{2V}	-112100.83	51.372	4.26	110.74	409.03	2239.6 (a ₁)	65.9 (b ₁)
Ga_2N_6	$\mathrm{D}_{2\mathrm{h}}$	-113591.17	68.966	4.03	119.15	414.87	$2251.8(b_{1u})$	$44.7 (b_{3u})$

表 4 $GaN_m^-(m=2\sim7)$ 、 $Ga_2N_m^-(m=3\sim6)$ 与 $GaN_m^+(m=2\sim7)$ 、 $Ga_2N_m^+(m=3\sim6)$ 团簇的 总能量、零点振动能、能隙、热容、标准熵和谐振频率

Table 4 The symmetry, total energy, zero-point vibrational energy, energy gap, heat capacity, standard entropy and harmonic vibrational frequency of GaN_m^- ($m=2\sim7$), $Ga_2N_m^-$ ($m=3\sim6$) and GaN_m^+ ($m=2\sim7$), $Ga_2N_m^+$ ($m=3\sim6$) clusters

	T-+-1/	Zero point	F	Heat	Standard	Frequenc	ies/cm ⁻¹
Cluster	Total energy/	energy/	Energy gap	capacity/	entropy/	Intensity	Lowest
	(a. u.)	(kJ/mol)	/eV	$[J/(mol \cdot k)]$	$[J/(mol \cdot k)]$	vibration	frequency
1a	-55305 . 16	16.673	0.86	42.34	256.66	1958.8(s _g)	225.4 (pi)
2a	-56795.03	32.886	4.78	52.05	283.82	2231.0 (s_g)	133.5 (a)
3a	-58286.17	35.789	2.14	75.57	330.80	2030.9 (b ₂)	92.2 (a ₁)
4a	-59775.72	50.666	4.45	85.90	368.65	2003.1 (a')	59.4 (a)
5a	-61265.56	65.673	3.93	95.14	377.39	2193.9 (b ₂)	$46.4 (b_1)$
6a	-62752.75	73.232	4.68	112.94	411.15	2228.9 (b ₂)	37.8 (b_1)
7a	-109121.64	33.282	1.00	73.18	360.84	2213.5 (a ₁)	21.1 (b_2)
8a	-110612.56	35.939	1.90	93.54	398.33	2167.9 (a ₁)	24.3 (b_1)
9a	-112101.55	52.080	1.16	108.66	407.97	2206.0 (a ₁)	72.2 (b_1)
10a	-113591.70	65.481	0.98	113.94	410.63	2213.0 (b _{1u})	60.8 (b_{3u})
2 c	-56785.90	28.512	2.54	54.40	292.88	1388.9 (s_g)	109.1 (a)
3c	-58270.61	37.370	1.73	68.17	321.88	2273.7 (a')	93.0 (a)
4 c	-59766.49	47.070	4.39	90.50	389.42	2004.3 (a)	49.4 (a')
5c	-61254.44	66.772	4.05	94.81	369.60	2298.1 (b ₂)	49.0 (a ₁)

							(续表)
	Total energy/	Zero point	Fnorgy gon	Heat	Standard	Frequenci	es/cm ⁻¹
Cluster		energy/	Energy gap /eV	capacity/	entropy/	Intensity	Lowest
	(a. u.)	(a. u.) /e	/ e v	$[J/(mol \cdot k)]$	$[J/(mol \cdot k)]$	vibration	frequency
6c	-62740.71	76.841	4.63	103.60	400.12	2253.0 (a')	51.7 (a)
7 c	-109115.16	33.536	4.78	72.68	350.28	2249.0 (a ₁)	77.5 (a_1)
8c	-110602.16	42.270	5.14	80.17	368.83	2308.2 (a')	41.8 (a)
9c	-112094.46	61.700	5.60	77.89	373.12	222.0 (a ₁)	26.7 (b ₂)
10c	-113583 35	67 502	4 46	120 57	420 98	2256 7 (b ₁)	40 8 (b ₂)

表 3 和表 4 还给出了 GaN_m ($m=2\sim7$) 和

Ga₂N_m(m=3~6)中性和离子团簇光电子谐振频率 的最低频率和红外(IR)最强频率,括号中指出了相 应的振动模式。最低振动频率可以反映所得结构是 否存在虚频,强度最大的振动频率可以反映红外光 谱中最强吸收峰的位置。从表中可以看出:1)各团 簇的振动频率均为正值,表明各结构均为势能面上 的极小点;2)富氮 $GaN_m(m=2\sim7)$ 和 $Ga_2N_m(m=2\sim7)$ 3~6)中性和离子团簇基态和亚稳态的最强振动频 率中大部分在 2200 cm⁻¹左右,与 GaN 的 GaN 纤锌 矿结构和闪锌矿结构的声子模式不同,在富镓 GaN 团簇的最强振动频率中也没有这个频率[21~23],说明 2200cm⁻¹是富 N 氮化镓团簇的 N-N 键振动模式。

3.3 稳定性研究

为了考察各系列团簇的稳定性,还计算了系列团 簇能量的二次差分值,得到如图 3,图 4 和图 5 所示的 曲线。对于 $D_2(E_n)$ 来说,其数值越大,簇合物稳定性 越高[24]。从各图可以看出,随着总原子数的增大,团 簇能量二次差分值均呈峰谷交替规律变化。GaN,,, $(m=2\sim7)$ 中 GaN₄ 和 GaN₆ 较稳定; Ga₂N_m (m= $3\sim6$)中 Ga_2N_3 和 Ga_2N_5 较稳定。因而可初步推得: 对于富N氮化镓中性团簇来说,总原子数是奇数的 团簇比总原子数是偶数的团簇稳定。在 GaN_m^- (m=

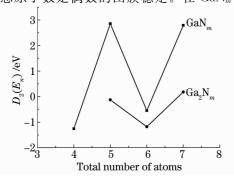


图 3 $GaN_m(m=2\sim7)$ 和 $Ga_2N_m(m=3\sim6)$ 团簇的 $D_2(E_n)$ 与总原子数的关系

Fig. 3 $D_2(E_n)$ against the number of total atoms of $GaN_m(m=2\sim7)$ and $Ga_2N_m(m=3\sim6)$ clusters

2~7)团簇中,总原子数是奇数的团簇较稳定,在 $Ga_2 N_m^- (m=3\sim6)$, $GaN_m^+ (m=2\sim7)$ At $Ga_2 N_m^+ (m=1\sim6)$ 3~6)团簇中,总原子数是偶数的团簇较稳定。

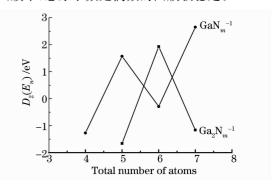


图 4 GaN_m^- ($m=2\sim7$)和 $Ga_2N_m^-$ ($m=3\sim6$)团簇的 $D_2(E_n)$ 与总原子数的关系

Fig. 4 $D_2(E_n)$ against the number of total atoms of GaN_m^- ($m=2\sim7$) and $Ga_2N_m^-$ ($m=3\sim6$) clusters

图 5 (a) GaN_m^+ ($m=2\sim7$), (b) $Ga_2N_m^+$ ($m=3\sim6$) 团簇 的 $D_2(E_n)$ 与总原子数的关系

Fig. 5 $D_2(E_n)$ against the number of total atoms of (a) GaN_m^+ ($m=2\sim7$) clusters, (b) $Ga_2N_m^+$ ($m=3\sim6$) clusters

4 结 论

对 $GaN_m(m=2\sim7)$ 和 $Ga_2N_m(m=3\sim6)$ 中性和离子团簇的计算结果表明:1) $GaN_m(m=2\sim7)$ 和 $Ga_2N_m(m=3\sim6)$ 中性和离子团簇的基态结构均为平面结构;2)所有团簇中都有 N_2 或 N_3 分子单元,而且在所有分子中 N_3 分子单元中的两个 N-N 键长也基本相同;3)富 N 氮化镓离子系列团簇的能隙范围比其对应中性系列团簇的宽。4)2200 cm⁻¹是富 N 氮化镓团簇中的强 N-N 键振动模式。

参考文献

- 1 P. Y. Feng, K. Balasubramanian. Electronic states and potential energy curves of Ga₂P, GaP₂, and their ions [J]. *Chem. Phys. Lett.*, 1997, **265**; 41~47
- 2 Guo Ling, Wu Haishun, Jin Zhihao. First principles investigation of geometry and stability of aluminum phosphorous binary clusters Al_nP_m (n + m = 5) [J]. *J. At. Mol. Phys.*, 2004. 21(2): 335~342
 - 郭 玲,武海顺,金志浩,第一性原理对 $Al_nP_m^-(n+m=5)$ 团簇 结构和稳定性研究 [J]. 原子与分子物理学报,2004,**21**(2): $335\sim342$
- 3 A. Costales, A. K. Kandalam, R. Franco *et al.*. Theoretical study of and vibrational properties of (AlP)_n, (AlAs)_n, (GaP)_n, (GaAs)_n, (InP)_n, and (InAs)_n clusters with n=1,2,3[J]. *J. Phys. Chem. B*, 2002, **106**(8): 1940~1944
- 4 Li Enling, Chen Guican, Wang Xuewen *et al.*. First principles study on structures and photoelectron spectroscopy about Ga_nP_m anions [J]. *J. At. Mol. Phys.*, 2006, **23**(2): 279~286 李思玲,陈贵灿,王雪文 等.第一性原理对 Ga_nP_m 阴离子团簇结构及其光电子能谱的研究[J]. 原子与分子物理学报, 2006, **23**(2): 279~286
- 5 Ma Wenjin, Wu Haishun. Structure and stability of AlmN⁺ (m = 3~9) [J]. *Chinese J. Struct. Chem*, 2004, **23**(1): 73~78 马文瑾,武海顺. AlmN⁺ (m=3~9) 团簇的结构与稳定性 [J]. 结构化学, 2004, **23**: 73~78
- 6 Li Enling, Yang Chenjun, Chen Guican et al.. First principles study on structure and stability of small Ga_nP_m clusters[J]. Acta Physica Sinica, 2005, 54(9): 4117~4123
- 李恩玲,杨成军,陈贵灿 等. 第一性原理对 Ga_nP_m 小团簇的结构 及稳定性的研究[J]. 物理学报, 2005, **54**(9): 4117 \sim 4123
- 7 Jia Wenhong, Wu Haishun. Studies on structures and photoelectron spectroscopy of Ga_mP_n and $GamP_n^-$ clusters [J]. Acta Physica Sinica, 2004, **53**(4): 1056~1062 贾文红,武海顺. Ga_mP_n 和 $Ga_mP_n^-$ 团簇结构及其光电子能谱的理论研究[J]. 物理学报, 2004, **53**(4): 1056~1062
- 8 A. Costales, A. K. Kandalam, R. Pandey. Theoretical study of neutral and anionic group ∭ nitride clusters: M_nN_n(M=Al, Ga, and In; n=4~6) [J]. *J. Phys. Chem. B*, 2003, **107**(19): 4508~4514
- 9 A. Costales, R. Pandey. Density functional calculations of small anionic clusters of group ∭ nitrides [J]. J. Phys. Chem. A, 2003, 107(1): 191~197
- 10 Song Bin, Ling Li, Cao Peilin. Theoretical study of the structure of small GaN clusters[J]. J. Zhejiang University, 2004, 31(3):

 $270 \sim 276$

- 宋 斌,凌 俐,曹培林. 氮化镓小团簇结构的理论研究[J]. 浙 江大学学报,2004,31:270~276
- 11 B. Song, P. L. Cao. Theoretical study of structures of Ga_3N_3 cluster[J]. Phys. Lett. A, 2002, $\bf 300(4-5)$: $489{\sim}496$
- 12 B. Song, P. L. Cao. Theoretical study of structures of $Ga_5\,N_5$ cluster[J]. Phys. Lett. A, 2002, $306(1):\,57\!\sim\!61$
- 13 B. Song, P. L. Cao, B. X. Li. Theoretical study of the structure of Ga₆N₆ cluster[J]. Phys. Lett. A, 2003, 315(3-4): 308~312
- 14 B. Song, P. L. Cao. Geometric and electronic structures of small GaN clusters[J]. Phys. Lett. A, 2004, 328(4-5): 364~374
- 15 Li Enling, Ma Deming, Ma Hong *et al*.. Study on structure and photoelectron spectroscopy about Si_{n-1}N and Si_{n-2}N₂(n=3~8) ion clusters[J]. *Acta Optica Sincia*, 2007, **27**(11): 1920~1928 李恩玲,马德明,马 红 等. Si_{n-1}N 和 Si_{n-2}N₂(n=3-8)离子团 簇结构及其光电子能谱的研究[J]. 光学学报, 2007, **27**(11): 1920~1928
- 16 Zhang Fuchun, Deng Zhouhu, Yan Junfeng *et al.*. First-principles calculation of electronic structure and optical properties of ZnO[J]. *Acta Optica Sinica*, 2006, **26**(8): 1203~1209 张富春,邓周虎,阎军锋等. ZnO 电子结构与光学性质的第一性原理计算[J]. 光学学报, 2006, **26**(8): 1203~1209
- 17 Xiao Qi, Qiu Guanzhou, Tan Wenqing *et al.*. Density functional calculation of electronic structure and optical properties of FeS² (pyrite)[J]. *Acta Optica Sinica*, 2002, **22**(12): 1501~1506 肖 奇,邱冠周,覃文庆 等. FeS² (pyrite) 电子结构与光学性质的密度泛函计算[J]. 光学学报, 2002, **22**(12): 1501~1506
- 18 M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 03, Revision A. 1, Gaussian Inc., Pittsburgh PA, 2003
- 19 A. K. Kandalam, R. Pandey, M. A. Blanco et al.. First principles study of polyatomic clusters of AlN, GaN, and InN. 1. structure, stability, vibrations, and ionization [J]. J. Phys. Chem. B, 2000, 104(18): 4361~4367
- 20 B. H. Boo, Z. Liu. Ab initio investigation of structures and energies of low-lying electronic states of AlN₃, Al₃N and Al₂N₂ [J]. J. Phys. Chem. A, 1999, 103(9): 1250~1254
- 21 Li Eeling, Wang Xuewen, Chen Guican et al.. Study of structure and stability of $Ga_nN_m^{-1}$ anions[J]. Acta Physica Sinica, 2006, 55(5): $2249 \sim 2256$
 - 李恩玲,王雪文,陈贵灿 等. $Ga_nN_m^{-1}$ 阴离子团簇的结构及稳定性的研究[J]. 物理学报, 2006, $\bf 55$ (5): $2249\sim2256$
- 22 Li Enling, Chen Guican, Wang Xuewen et al.. Study of structure and stability of Ga_nN_m⁺(n=1~8,m=1~2) clusters using density functional theory (DFT)[J]. Chinese J. Computational Physics, 2007, 24(4): 480~486
 - 李恩玲,陈贵灿,王雪文 等. $Ga_nN_m^+(n=1\sim8,m=1\sim2)$ 团簇的 结构及稳定性的 DFT 研究 [J]. 计算物理, 2007, **24**(4): 480 \sim 486
- 23 Li Enling, Chen Guican, Wang Xuewen *et al.*. Ab initio investigation of structures and stability of Ga_nN_m clusters[J]. *J. At. Mol. Phy.*, 2007, **24**(3): 477~485 李恩玲,陈贵灿,王雪文 等. Ga_nN_m 团簇结构与稳定性的从头算法研究[J]. 原子与分子物理学报, 2007, **24**(3): 477~485
- 24 Wang Guanghou. New progress in cluster physics (1) [J]. *Progress in Physics*, 1994, **14**(2): 121~172 王广厚. 团簇物理的新进展(I)[J]. 物理学进展, 1994, **14**(2): 121~172